Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation

Or Shemer¹, <u>Udi Landau^{1*}</u>, Héctor Candela², Assaf Zemach³ and Leor Eshed-Williams¹

1. The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100 Israel. *E-mail: udi.landau@mail.huji.ac.il

2. Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.

3. Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.

Abstract

Plants exhibit high capacity to regenerate in three alternative pathways: tissue repair, somatic embryo-genesis and de novo organogenesis. For most plants, de novo organ initiation can be easily achieved in tissue culture by exposing explants to auxin and/or cytokinin, yet the competence to regenerate varies among species and within tissues from the same plant. In Arabidopsis, root explants incubated directly on cytokinin-rich shoot inducing medium (SIM-direct), are incapable of regenerating shoots, and a pre-incubation step on auxin-rich callus inducing medium (CIM) is required to acquire competency to regenerate on the SIM. However the mechanism underlying competency acquisition still remains elusive. Here we show that the chromomethylase 3 (cmt3) mutant which exhibits significant reduction in CHG methylation, shows high capacity to regenerate on SIM-direct and that regeneration occurs via direct organogenesis. In WT, WUSCHEL (WUS) promoter, an essential gene for shoot formation, is highly methylated, and its expression on SIM requires pre-incubation on CIM. However, in cmt3 WUS expression induced by SIM-direct. We propose that pre-incubation on CIM is required for the re-activation of cell division. Following the transfer of roots to SIM, the intensive cell division activity continues, and in the presence of cytokinin leads to a dilution in DNA methylation that allows certain genes required for shoot regeneration to respond to SIM, thereby advancing shoot formation.